
 

2023 Asian Conference on Remote Sensing (ACRS2023) 

EXPLORING BUILDING HEIGHT ESTIMATION METHODS AND 

THEIR APPLICATIONS IN MICRO-SCALE POPULATION DATA 

ANALYSIS 

Kittisak Maneepong1 and Yuki Akiyama2  
1Graduate Student, Graduate School of Integrative Science and Engineering, Tokyo City University 

1-28-1 Tamatsuzumi, Setagaya-ku, Tokyo 158-8557 

Email: g2291605@tcu.ac.jp 

 
2Associate Professor, Department of Urban and Civil Engineering, Faculty of Architecture and Urban Design, Tokyo 

City University,  

1-28-1 Tamatsuzumi, Setagaya-ku, Tokyo 158-8557 

Email: akiyamay@tcu.ac.jp 

 

KEYWORDS: Building Height Estimation, Open Data Sources, Micro-Population Data, Digital Surface Model 

(DSM), Morphological Operations 

ABSTRACT: This paper investigates the optimal method for estimating building heights from open data sources that 

can be used to create micro-population data. Micro-population data can be used in various fields, including urban 

planning and policymaking, and has therefore attracted the attention of researchers. However, the difficulty in accessing 

micro-population data has been a significant obstacle for them not only in developing countries but also in developed 

countries, necessitating the development of micro-scale population data. The method presented in this paper aims at 

global applicability, which is beneficial by proposing the development of building data with a minimal budget. One of 

the essential data to create micro-population data is the building data, including its height, which is not commonly 

available as the open data. Our method is based on morphological operations on the digital surface model (DSM), 

which includes the local maximum/minimum filtration, and the maximum slope filtration. The study area covered in 

this paper is some parts of Bangkok and Tokyo, and the results are compared with the ground truth data. The results 

show that the method estimated building heights using local maximum/minimum filtration, and the maximum slope 

filtration over Bangkok obtained a 5-meter accuracy of 81.0 and 82.3 percent, respectively. The result over Shinjuku 

Tokyo is obtained with a 5-meter accuracy of 50.8 and 55.0 percent, respectively, while the accuracy in Hachioji is 

more pronounced at 65.8% and 51.9%. This suggests the acceptable use for the application with a higher margin of 

error, for instance, the number of floors, which can be used to create micro-scale population data. However, a higher 

degree of accuracy is preferable, and the factors affecting the accuracy should be considered. Further research is 

required to justify the quality between the open data and the higher resolution data to identify the compromise between 

the quality of the data and the cost. 

1. INTRODUCTION 

Understanding population is crucial for effective urban planning and resource allocation, particularly in areas such as 

transportation planning, disaster mitigation, and epidemic management (Hay et al., 2005; Hossain and Meng, 2020; Li et 

al., 2022; Mohanty and Simonovic, 2021; Nishimoto et al., 2016, p. 20; Rogers et al., 2014; Smith et al., 2019; Weiss et 

al., 2020, p. 20). Population data is primarily obtained through population censuses, generally conducted every 5 to 10 

years, which are widely used and publicly accessible (United Nations, Department of Economic and Social Affairs, 

Population Division, 2019). However, collecting and analyzing population data is a resource-intensive and time-

consuming task. Additionally, traditional population censuses often lack spatially detailed information on population 

distribution and are usually conducted at a macro level. Furthermore, they face challenges in capturing temporal changes 

due to the fluctuating boundaries of administrative units that govern data collection processes.  

In addition to conventional censuses, alternative techniques to obtain micro-level population data through geospatial 

data were proposed (Chen et al., 2021; Pajares et al., 2021; Yao et al., 2017), providing a more detailed understanding of 

population distribution, enabling their application in various domains. Using geodata, such as building floor areas and 

their footprints, is common in estimating micro-population data. (Akiyama et al., 2019, 2013; Pajares et al., 2021). Studies 

have suggested using various building data, such as floor count, building usage, and building footprints, to estimate 

building-scale population. However, during our replication efforts, we encountered limited availability of such data, 

particularly in developing countries, where most data is either unavailable or restricted by commercialization. 

Additionally, the accuracy of population estimation using open data sources has not been explored in detail, particularly 

in developing regions and smaller cities. 
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As part of our core objective, our study aims to address the issue of population distribution. Specifically, we have 

conducted a brief research investigation on the estimation of population at the building level. Previous studies have 

primarily focused on estimating population at the grid level by combining multiple geospatial data sources. Table 1 

provides an examination and classification of the auxiliary data commonly employed in contemporary population 

mapping studies. Notably, land cover data have been extensively utilized in previous research endeavors (Zandbergen 

and Ignizio, 2010). Researchers have demonstrated interest in socio-economic factors, including property ownership, as 

well as building information encompassing type and height. Such building information allows for higher-resolution 

settlement delineation and a detailed understanding of built-up spaces (Calka et al., 2017; Chen et al., 2021; Pajares et al., 

2021; Schug et al., 2021; Wang et al., 2021; Yao et al., 2017). Night lights data have also been integrated into population 

estimation in several studies (Chen et al., 2021; Lloyd et al., 2017; Sorichetta et al., 2015; Zandbergen and Ignizio, 2010). 

However, the correlation between night lights and population estimation has been subject to debate, as utilizing night 

lights data has shown a tendency to overestimate population in areas with high light intensity and underestimate 

population in regions with lower light intensity (Sorichetta et al., 2015; Zandbergen and Ignizio, 2010). However, limited 

research has been conducted specifically on estimating population at the building level.  

Despite the availability of sub-meter satellite imagery, the cost of accessing such data remains significantly high, and 

limited access (Dare, 2005). Therefore, we have chosen to utilize openly available building data, including building 

footprints and building height information, for our population estimation. Recent studies have explored the estimation of 

building height using open data sources (Huang et al., 2022; Milojevic-Dupont et al., 2020; Yang and Zhao, 2022). 

Various techniques have been employed to identify ground features, such as maximum slope filtration (Vosselman, 2000) 

or identification of local minima (Huang et al., 2022). However, it is important to note that these experiments were 

conducted using higher resolution input data, as methodologies successful at higher resolutions may not yield accurate 

results at lower resolutions. 

Table 1:State-of-the-art about auxiliary data in population mapping 

Auxiliary data Review 2010-2016 2017-2022 

Built-up Building Footprints  (Calka et al., 2017; Chen et al., 2021; Pajares et 

al., 2021; Schug et al., 2021; Wang et al., 2021) 

Building Height  (Balakrishnan, 2020; Calka et al., 2017; Chen et 

al., 2021; Schug et al., 2021) 

Building Type  (Calka et al., 2017; Chen et al., 2021; Pajares et 

al., 2021; Schug et al., 2021; Shang et al., 2021; 

Wang et al., 2021; Yao et al., 2017) 

Road Cover (Sorichetta et al., 2015; 

Worldpop, 2013; Zandbergen 

and Ignizio, 2010) 

(Balakrishnan, 2020; Lloyd et al., 2017) 

Surface Land Cover (Azar et al., 2013; Sorichetta et 

al., 2015; Worldpop, 2013; 

Zandbergen and Ignizio, 2010) 

(Balakrishnan, 2020; European Commission. 

Joint Research Centre., 2019; Facebook 

Connectivity Lab and Center for International 

Earth Science Information Network - CIESIN - 

Columbia University, 2016; Pajares et al., 2021; 

Sorichetta et al., 2015) 

Land Use  (Balakrishnan, 2020) 

 Terrain Elevation (Azar et al., 2013)  

Environment Night Lights (Sorichetta et al., 2015; 

Worldpop, 2013; Zandbergen 

and Ignizio, 2010; Zeng et al., 

2011) 

(Chen et al., 2021; Li and Zhou, 2018; Lloyd et 

al., 2017) 

Climate (Sorichetta et al., 2015; 

Worldpop, 2013) 

(Lloyd et al., 2017) 

 

In this context, we assume that all buildings have a consistent shape from the base to the top throughout their height. 

This assumption allows us to simplify the estimation process by considering a uniform structure for all buildings included 

in our analysis. While this assumption may not capture the diverse architectural characteristics of real-world buildings, it 

provides an approximation that aids in the estimation of population at the building level. 

We aim to bridge the gap by proposing a methodology for estimating the population at the building scale using open 

data sources. Our objective is to develop a global and cost-effective approach that accurately estimates the population at 

the building level. The proposed methodology involves the fusion of building information with population data, 

leveraging state-of-the-art techniques. This fusion approach enhances the accuracy and granularity of population 

estimation by considering individual building characteristics. This study focuses explicitly on estimating building height 
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using open data sources, a critical component of building data. We conducted tests by reproducing previous techniques 

and comparing each approach using case studies in Bangkok and Tokyo, comparing the results with ground truth data.  

2. DATASETS AND STUDY AREA 

The data utilized for this study were carefully chosen based on the criterion of being open, accessible, and current. The 

following section presents the precise data that has been selected.  

2.1   ALOS World 3D 

In the quest to estimate building heights, we sought the most recent and openly accessible Digital Surface Model (DSM). 

Advanced Land Observing Satellite (ALOS) World 3D (AW3D30) dataset (Earth Observation Research Center, Japan 

Aerospace Exploration Agency (JAXA EORC), 2016) considered is chosen considering both openness and resolution. 

The AW3D30 dataset provides high-resolution terrain data with a horizontal resolution of 30 meters and a vertical 

accuracy of 5 meters. Encompassing global land areas, the AW3D30 dataset was created using data gathered by the 

PRISM (Panchromatic Remote-Sensing Instrument for Stereo Mapping) onboard the ALOS satellite, which was active 

from 2006 to 2011. 

2.2  GlobalMLBuildingFootprints 

We utilized the shape of buildings data from the GlobalMLBuildingFootprints dataset provided by Microsoft. This 

dataset, created using Bing Map imagery spanning from 2014 to 2023, supports the generation of building edges through 

two techniques: semantic segmentation, which involves the classification of each pixel in the image into a category, and 

polygonization, a process that converts pixelated shapes into polygonal forms. These techniques have been thoroughly 

validated and deliver an impressive accuracy rate exceeding 90% (Microsoft, 2023)  

2.3   NASADEM 

In conjunction with DSM data, the digital elevation model (DEM) derived from the Shuttle Radar Topography Mission 

(SRTM) provides the ground references at 30 meters resolution (NASA JPL, 2020). This data serves as a reference. Data 

from AW3D30 will guide the primary estimation. 

2.4   Study Area 

The study area encompassed four distinct socio-economic regions, two areas in Tokyo, and combined two areas of 

Bangkok, Thailand, considering variables such as relative population density land use. Table 2 shows the deviation in 

terrain using   NASADEM as a reference. 

Table 2:Elevation Information of Selected Urban Areas in Tokyo and Bangkok 

Area Average Elevation (m) SD of Elevation (m) 

Shinjuku, Tokyo 35.48 10.86 

Hachioji, Tokyo 215.57 134.55 

Saphan Sung, Bangkok 2.30 2.49 

Vadhana, Bangkok 3.64 7.04 

 
2.4.1 Tokyo 

Shinjuku, Tokyo, renowned as an administrative, transportation, and commercial hub, stands out as one of the most 

densely populated areas. The population within an 18-square-kilometer area (Geospatial Information Authority of 

Japan(GSI), 2016) reaches 346,000 (Statistics Division, Bureau of General Affairs, 2022), approximately 19,000 

individuals per square kilometer. The landscape is dominated by towering buildings and expansive shopping malls. 

Hachioji City, located in the western part of the Tokyo metropolitan area, is known for its picturesque natural 

surroundings and outdoor recreational opportunities. The area features mountainous terrain and easy access to numerous 

hiking trails and parks. Despite its suburban location, Hachioji City exhibits a comparatively low population density 

compared to other parts of Tokyo, housing approximately 561,000 people within an area of 186.38 square kilometers 

(Geospatial Information Authority of Japan(GSI), 2016; Statistics Division, Bureau of General Affairs, 2022). This 

translates to an approximate population density of 4,900 individuals per square kilometer. 
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2.4.2 Bangkok 

Situated in the northeastern region of Bangkok, Saphan Sung District is characterized by its suburban geographical 

features and covers an area of approximately 28.1 square kilometers. The district’s strategic location, in close proximity 

to the airport train network, has had a significant impact on the area’s development trajectory. Saphan Sung has played a 

key role in fostering the growth of the surrounding region and is widely recognized as a suburb characterized by a 

harmonious blend of residential and commercial development. 

Wattana, another district in Bangkok, covers an area of 12.56 square kilometers and is home to approximately 80,800 

(Open Government Data of Thailand, 2021). Wattana is geographically located in the heart of Bangkok. It is known for 

its affluence and cosmopolitan ambiance. The district boasts a developed landscape with an array of high-rise, low-rise, 

and commercial buildings, complemented by excellent connectivity to other areas through an extensive train network. 

Wattana is a dynamic and diverse neighborhood that is home to both Thai and foreign residents. The area offers a wide 

range of amenities, including upscale boutiques, restaurants, and entertainment venues. It is widely recognized as one of 

Bangkok’s most affluent and desirable neighborhoods, characterized by high property values and an elevated standard of 

living. 

For our study, we will analyze both Bangkok districts, consolidating them into one model. This merger is aimed at 

enlarging the sample size and enhancing our ability to obtain accurate ground truth data for research purposes. 

3. METHOD TESTED 

Our study assesses two methodologies that use the   ALOS World 3D DSM to estimate building height. The most 

widespread of these techniques entails extracting ground elevation data directly from the DSM. At the current stage of 

our research, the building shape is primarily employed as a reference and means of storing the respective building heights. 

Rather than focusing on intricate architectural details, our analysis emphasizes the utilization of building shape as a basic 

framework for height representation. This simplified approach allows us to effectively integrate the height information 

within our population estimation methodology, while minimizing the complexity associated with considering the unique 

geometric characteristics of individual buildings. 

3.1 Sliding Windows 

The sliding window technique is employed to “normalize” the DSM by utilizing the minimum and maximum values 

within a window (Huang et al., 2022). The slope correction is facilitated by integrating NASADEM, which aids in 

determining the slope. This method involves applying a filter that replaces each pixel value with the minimum or 

maximum value within its neighboring vicinity. The slope correction is primarily based on terrain data obtained from   

NASADEM, particularly in regions where the slope exceeds 10 degrees.  

The data used for our analysis is the DSM, which can be visualized as a matrix of pixels. Mathematically, the DSM 

matrix is denoted as: 

𝐷𝑆𝑀 = [

𝑥00 … 𝑥0𝑛

⋮ ⋱ ⋮
𝑥𝑚0 … 𝑥𝑚𝑛

]     ( 1) 

Where each𝑥𝑖𝑗 represents the pixel value at position (𝑖, 𝑗) in the DSM matrix. The neighboring values of 𝑥𝑖𝑗 can be 

identified as: 

𝐷𝑆𝑀𝑖𝑗 = [

𝑥(𝑖−1)(𝑗−1) 𝑥(𝑖−1)𝑗 𝑥(𝑖−1)(𝑗+1)

𝑥𝑖(𝑗−1) 𝑥𝑖𝑗 𝑥𝑖(𝑗+1)

𝑥(𝑖+1)(𝑗−1) 𝑥(𝑖+1)𝑗 𝑥(𝑖+1)(𝑗+1)

]    ( 2) 

In order to find the minimum and maximum points, two matrices are created. The 𝑚𝑎𝑥(𝐷𝑆𝑀) matrix stores the 

maximum value within the 3-by-3 neighborhood for each pixel, while the 𝑚𝑖𝑛(𝐷𝑆𝑀) matrix stores the minimum value. 

These matrices have the same dimensions as the DSM. 

𝑚𝑎𝑥(𝐷𝑆𝑀) = [

𝑚𝑎𝑥(𝐷𝑆𝑀(0,0)) … 𝑚𝑎𝑥(𝐷𝑆𝑀(0,𝑛))
⋮ ⋱ ⋮

𝑚𝑎𝑥(𝐷𝑆𝑀(𝑚,0)) … 𝑚𝑎𝑥(𝐷𝑆𝑀(𝑚,𝑛))

]    ( 3) 
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𝑚𝑖𝑛(𝐷𝑆𝑀) = [

min(𝐷𝑆𝑀(0,0)) … min(𝐷𝑆𝑀(0,𝑛))
⋮ ⋱ ⋮

min(𝐷𝑆𝑀(𝑚,0)) … min(𝐷𝑆𝑀(𝑚,𝑛))
]    ( 4) 

Then, normalize the DSM, the difference between the local maximum and minimum values is calculated. This is done 

by subtracting the 𝑚𝑖𝑛(𝐷𝑆𝑀) matrix from the 𝑚𝑎𝑥(𝐷𝑆𝑀) matrix. The result represents the normalized DSM, denoted 

as 𝑛𝐷𝑆𝑀. 

nDSM = max(DSM) − min(DSM)    ( 5) 

Slope correction is applied to the normalized DSM to account for the slope of the terrain. The minimum DSM matrix 

is used to calculate the slope correction, denoted as 𝑠𝑙𝑜𝑝𝑒𝑐𝑜𝑟 , terrain data from NASADEM is employed as a reference 

for slope values. Steps 1-3 are repeated using the 𝑚𝑖𝑛(𝐷𝑆𝑀) as the input. 

The final step involves calculating the corrected normalized DSM, denoted as 𝑐𝐷𝑆𝑀𝑖𝑗, based on slope conditions. The 

terrain model from NASADEM is used as a reference for the slope. If the slope value at position (𝑖, 𝑗), denoted as 𝑠𝑙𝑜𝑝𝑒𝑖𝑗, 

is greater than or equal to a threshold percentage (x%), the corrected DSM value is obtained by subtracting the slope 

correction from the normalized DSM value. If the slope value is less than the threshold percentage, the corrected DSM 

value remains the same as the normalized DSM value. 

𝑐𝐷𝑆𝑀𝑖𝑗 = {
n𝐷𝑆𝑀𝑖𝑗 − slopecor𝑖𝑗

, if slope𝑖𝑗  ≥ 𝑥%

n𝐷𝑆𝑀𝑖𝑗 , if slope𝑖𝑗  < 𝑥%
   ( 6) 

Where: 𝑐𝐷𝑆𝑀𝑖𝑗 = the corrected DSM at position (𝑖, 𝑗), 

  𝑛𝐷𝑆𝑀𝑖𝑗 = the normalized DSM at position (𝑖, 𝑗), 

  𝑠𝑙𝑜𝑝𝑒𝑖𝑗 = the slope value at position (𝑖, 𝑗), 

  𝑆𝑙𝑜𝑝𝑒𝑐𝑜𝑟𝑖𝑗
 = the slope correction based on terrain data, and 

  𝑥% = the threshold slope percentage.  

In summary, this calculation method aims to identify local minimum and maximum values in a DSM and then 

normalize the DSM by accounting for slope conditions. The resulting corrected DSM can provide enhanced information 

about the analyzed terrain or surface. 

3.2 Slope-based 

Utilize the terrain filtration technique to the DSM data, to filter the terrain (Vosselman, 2000). 

𝐷𝐸𝑀 = pi ∈ 𝐴|∀pj ∈ 𝐴: hpi
− hpj

≤ ∆hmax (d(pi, pj))    ( 7) 

Let 𝐴 represent the set of all points, and DEM denote the set of ground points. A point pi is classified as a terrain point 

if there does not exist another point pj such that the height difference between pi and pj exceeds the maximum allowed 

height difference at the distance between these points.  

Subsequent to the exclusion of areas exceeding the maximum slope, the ground elevation is interpolated using the 

Inverse distance weighted (IDW) to replenish the terrain (Shepard, 1968).  

𝑍(𝑥) =
∑ 𝑤𝑖𝑍𝑖

∑ 𝑤𝑖
; 𝑤𝑖 = 1/𝑑𝑖

𝑝
     ( 8) 

For estimating the value at a particular location within a spatial domain, a weighted average of observed values near 

that location is employed. This approach assigns weights that are inversely proportional to the distances between the 

points, thus assigning greater weights to points in closer proximity. The weight 𝑤𝑖  is defined as 𝑤𝑖 =
1

𝑑
𝑖
𝑝, where 𝑑𝑖  

represents the distance between the point of interest 𝑥 and the data point 𝑍𝑖. The parameter 𝑝 is a power parameter that 

modulates the weight assigned to data points based on their distance from 𝑥. This approach ensures that closer data points 

exert a greater influence on the estimated value at 𝑥. 
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4. RESULT 

In a comparative analysis between two methods, sliding window and slope-based, the performance metrics of height 

prediction were evaluated in three different areas: Shinjuku (Tokyo), Hachioji (Tokyo), and Vadhana-Saphan Sung 

(Bangkok). The metrics used to evaluate the performance of these methods were Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE), R-squared, Relative Absolute Error (RAE), Relative Squared Error (RSE), Prediction Bias, 

and Accuracy Percentage within thresholds of ±1m, ±2m, and ±5m. 

 

Figure 1: Result Visualization over Hachioji, Tokyo 

 

Table 3:Comparative Results Metrics and Accuracy 

Metric 

Shinjuku,  

Tokyo 

Hachioji,  

Tokyo 

Vadhana-Saphan Sung, 

Bangkok 

Sliding 

windows Slope based 

Sliding 

windows Slope based 

Sliding 

windows Slope based 

MAE 6.37 5.73 4.50 8.53 4.46 4.07 

RMSE 9.21 8.36 5.67 13.45 8.80 8.31 

R-Squared -0.19 -0.01 -1.69 -14.83 -0.09 0.03 

RAE 1.33 1.07 3.50 5.77 1.32 1.21 

RSE 1.19 1.01 2.69 15.83 1.09 0.97 

Prediction Bias -5.04 -3.37 -2.56 4.08 -2.18 -3.46 

% Accuracy ±1 m 10.4% 12.1% 12.6% 10.1% 15.6% 13.9% 

% Accuracy ±2 m 19.6% 23.5% 24.2% 20.8% 31.4% 30.3% 

% Accuracy ±5 m 50.8% 55.0% 65.8% 51.9% 81.0% 82.3% 
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In the Shinjuku area of Tokyo, the sliding windows method yielded an MAE of 6.37, while the slope-based method 

had a slightly lower MAE of 5.73. However, both methods had comparable RMSE values of 9.21 for the sliding windows 

method and 8.36 for the slope-based method. Interestingly, the R-squared value for the sliding windows method (-0.19) 

was closer to zero compared to the slope-based method (-0.01), suggesting a slightly better fit of the model to the data for 

the latter. 

For the Hachioji area in Tokyo, the sliding windows method outperformed the slope-based method in terms of MAE, 

with values of 4.50 and 8.53, respectively. The RMSE for the sliding windows method was significantly lower at 5.67 

compared to 13.45 for the slope-based method. This large difference indicates a much better prediction accuracy for the 

sliding windows method in this region. The R-squared values further emphasize this difference, with the Sliding windows 

method showing -1.69 and the Slope-based method showing a much lower value of -14.83. 

In contrast, for the Vadhana-Saphan Sung area in Bangkok, the differences between the two methods were less 

pronounced. The MAE for the sliding window method was 4.46, slightly higher than the 4.07 for the slope-based method. 

Both methods showed similar RMSE values of 8.80 for sliding windows and 8.31 for slope-based. The R-squared values 

were closer to zero for both methods, indicating a better fit to the data compared to the other regions. 

In terms of accuracy percentages, there were different results for the three regions. In Shinjuku, the Slope-based method 

showed higher accuracy at all three thresholds, with the most significant difference observed at the ±5 m threshold (55.0% 

for Slope-based vs. 50.8% for Sliding windows). In Hachioji, however, the sliding window method was superior in 

accuracy at both the ±2m and ±5m thresholds. For the Vadhana-Saphan Sung area, the Slope-based method slightly 

outperformed at the ±5m threshold, with an accuracy of 82.3% compared to 81.0% for the Sliding windows method. 

 

 
 

Figure 2: Comparative Accuracy of Sliding Windows and Slope-based 
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5. CONCLUSION 

The results of two height prediction methodologies: the Sliding windows and Slope-based approaches, focusing on 

three geographically distinct regions: Shinjuku and Hachioji in Tokyo, and Vadhana-Saphan Sung in Bangkok. The 

results revealed nuanced variations in the performance of both methods across the selected areas.  

1. In Shinjuku, Tokyo, the Slope-based method exhibited marginally superior predictive accuracy, particularly 

evident in the MAE and accuracy percentage metrics. 

2. Conversely, in Hachioji, Tokyo, the Sliding windows method showcased better prediction accuracy, as 

highlighted by its lower MAE and RMSE. 

Figure 3: Comparison Plot of Each Method Evaluation Metrics 
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3. For Vadhana-Saphan Sung, Bangkok, both methods demonstrated similar performance, with minor advantages 

for the Slope-based approach in specific metrics. 

The disparities in the efficacy of the two methods across regions underscore the importance of regional factors in height 

prediction. Furthermore, neither method universally outperformed the other, indicating the need for a context-specific 

approach in selecting the appropriate methodology. Indicate that, overall, it can be observed that the slope-based filtering 

technique tends to exhibit superior performance in regions of lower complexity when compared to the sliding window 

technique. However, the employed techniques tend to result in underestimations and negative R-squared values. This 

suggests that the estimations may not strongly correlate with the ground truth values. However, the accuracy metrics 

demonstrate a relatively high degree of precision for flat terrains, such as those found in Bangkok with the sliding window 

technique. 

6. DISCUSSION 

Building height plays a crucial role in building data analysis as it facilitates the estimation of population at the building 

scale. By understanding the height of a building, we gain valuable insights into the approximate area occupied by each 

structure. Notably, the use of sliding windows in building height estimation has proven to be more effective in flat terrains. 

Research findings indicate that such methodologies can achieve up to 80% accuracy when estimating building height on 

a preliminary basis. This demonstrates the potential of sliding windows in accurately gauging vertical dimensions when 

the terrain exhibits relative flatness. 

The accuracy of building height estimation is influenced by several factors, including the resolution of the input data 

and terrain variations. It is important to note that the resolution of the input data, at 30 meters, may be relatively coarse 

for detached buildings. The DSM data may not accurately represent the ground surrounding the building and the building 

itself. Furthermore, the relatively coarse resolution of the input DSM data may pose challenges in representing high 

structures surrounded by lower structures, as the elevation data is averaged within a 30m-by-30-m grid. This phenomenon 

has been empirically observed to lead to overestimations for structures of lower height and underestimations for structures 

of greater height. The higher resolution of the input data can result in a better correlation (Li et al., 2020). Additionally, 

terrain variations significantly impact the results. 

To further enhance this study, future research could focus on obtaining higher-quality input data or exploring the 

application of machine learning (ML) techniques directly on satellite imagery. However, it is essential to note that 

accessing openly available very high-resolution satellite images may pose challenges at present. Nonetheless, 

investigating alternative approaches beyond stereo image, DSM, holds promise for expanding the scope of the study. 

Exploring advanced ML algorithms, such as convolutional neural networks (CNNs), could potentially enable the direct 

analysis of satellite imagery without relying on stereo pairs. By leveraging the rich spatial information captured in high-

resolution satellite images, ML models can learn complex patterns and features related to building height estimation. This 

approach may offer increased accuracy and efficiency compared to traditional methodologies using stereo imagery. 

Furthermore, it can be beneficial to validate results using commercialized higher-resolution data (sub-meter) to assess 

their significance in quality of the result. This approach allows for real-world application. 

The estimation of building height is expected to be utilized in population estimation at the building level. One potential 

approach in building height estimation and population disaggregation is the utilization of direct height or floor information, 

combined with a micro-scale dasymetric modeling approach (Akiyama et al., 2019). However, the aim of this study is to 

advance beyond relying solely on auxiliary data and investigate the application of machine learning techniques, once the 

auxiliary data becomes more comprehensive and detailed. By enriching the auxiliary dataset, we aim to achieve more 

refined estimations, thereby enhancing the understanding of building height dynamics and improving population 

disaggregation at a higher resolution level. 

The result can potentially be further applied in various approaches. For example, conventional transportation planning 

approaches typically utilize aggregated population data within specific zones of interest; nevertheless, including micro-

population data allows for a more detailed consideration of traffic flow specifics and transportation system demand. 

Similarly, integrating population distribution into disaster management enhances comprehension of at-risk populations 

and facilitates more efficient evacuation plans. Additionally, micro-population data proves valuable in epidemic 

management by enabling precise estimation of medical resource needs to be grounded in population distribution. 

Overall, the estimation of building height offers potential insights into population dynamics and can revolutionize 

various domains by enabling more detailed and data-driven decision making. By considering the impact of terrain 

variations, leveraging higher-resolution input data, and continuously refining estimation techniques, it is possible to use 

all potential of building height estimation for enhanced urban planning and resource allocation. 
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